112 花蓮縣國中

版主: thepiano

回覆文章
頭像
thepiano
文章: 5745
註冊時間: 2008年 7月 29日, 10:12

112 花蓮縣國中

文章 thepiano »

請參考附件
附加檔案
112 花蓮縣國中_題目.pdf
(315.84 KiB) 已下載 425 次
112 花蓮縣國中_答案.pdf
(118.55 KiB) 已下載 372 次

eaddiye
文章: 3
註冊時間: 2012年 1月 19日, 17:28

Re: 112 花蓮縣國中

文章 eaddiye »

想求救版上數學神人
第6、15 、18 、23、24、25題 :cry: :cry: :cry: :cry: :cry:

頭像
thepiano
文章: 5745
註冊時間: 2008年 7月 29日, 10:12

Re: 112 花蓮縣國中

文章 thepiano »

第 6 題
lim|[(-1)^(n - 1)/(n * 3^n)]/{(-1)^n/[(n + 1) * 3^(n + 1)]}| (n → ∞)
= lim|[3(n + 1)/n]| (n → ∞)
= 3

但當 x = 3,原式 = 1 - 1/2 + 1/3 - 1/4 + ...... = ln2,收斂
故收斂半徑是 (-3,3]


第 15 題
x = 2√2cosθ,y = √2sinθ
xy = 2sin2θ ≦ 2


第 18 題
A([-b + √(b^2 - 4ac)]/(2a),0)、B([-b - √(b^2 - 4ac)]/(2a),0)、C(0,c)
易知直線 AC 和 BC 垂直
直線 AC 的斜率 * 直線 BC 的斜率 = -1
......


第 23 題
作 EH 垂直 AB 於 H
正七邊形的邊長為 2,故 BH = 1

向量 AB ∙向量 BE
= -2向量 BH ∙向量 BE
= -2|向量 BH| * |向量 BE| * cos∠EBH
= -2|向量 BH|^2


第 24 題
這題不好解,估一下就好
0 度 < α ≦ 45 度
secα > 0

α = 10 度,cot20 度 - √3 = tan70 度 - √3 > 0
α = 20 度,cot40 度 - √3 = tan50 度 - √3 < 0
α = 30 度,cot60 度 - √3 = tan30 度 - √3 < 0
α = 40 度,cot80 度 - √3 = tan10 度 - √3 < 0


第 25 題
令 z = r(cosθ + isinθ)
z^2 = r^2(cos2θ + isin2θ)

|z^2 + 1| = |z|
|z^2 + 1|^2 = |z|^2
(r^2cos2θ + 1)^2 + (r^2sin2θ)^2 = r^2
r^4 + 2r^2cos2θ + 1 = r^2
cos2θ = (-r^4 + r^2 - 1)/(2r^2)

-1 ≦ (-r^4 + r^2 - 1)/(2r^2) ≦ 1
......

michtung
文章: 6
註冊時間: 2023年 6月 14日, 09:31

Re: 112 花蓮縣國中

文章 michtung »

想請教第4題的(D)選項要如何計算 謝謝

頭像
thepiano
文章: 5745
註冊時間: 2008年 7月 29日, 10:12

Re: 112 花蓮縣國中

文章 thepiano »

當 x → π/2 或 -π/2 時
tan(x)/(1 + x^2 + x^4) → ∞
故無法從 -3 積到 3

回覆文章

回到「國中教甄討論區」