103恆春工商一題

版主: thepiano

回覆文章
iammark
文章: 3
註冊時間: 2010年 3月 10日, 11:39

103恆春工商一題

文章 iammark »

請教高手。謝謝。
若 a>0 且b>0, 求 a^2/(b-2) + b^2/(a-2)的最小值。

iammark
文章: 3
註冊時間: 2010年 3月 10日, 11:39

Re: 103恆春工商一題

文章 iammark »

加官方公佈的選擇題試題。
附加檔案
103恆春工商.pdf
(53.93 KiB) 已下載 533 次

頭像
thepiano
文章: 5745
註冊時間: 2008年 7月 29日, 10:12

Re: 103恆春工商一題

文章 thepiano »

應是 a > 2,b > 2

若是填充題,可猜測最小值出現在 a = b 時
原式化為 2a^2/(a - 2)
易知 a = b = 4 時,有最小值 16

那若是計算題呢?
猜到最小值是 16 後
就證明 a^2/(b - 2) + b^2/(a - 2) ≧ 16
a^2(a - 2) + b^2(b - 2) ≧ 16(a -2)(b - 2)
a^3 - 2a^2 + b^3 - 2b^2 - 16ab + 32a + 32b - 64 ≧ 0
(a^3 - 10a^2 + 32a - 32) + (b^3 - 10b^2 + 32b - 32) + 8(a - b)^2 ≧ 0
(a - 4)^2(a - 2) + (b - 4)^2(b - 2) + 8(a - b)^2 ≧ 0
等號成立於 a = b = 4

ellipse
文章: 374
註冊時間: 2010年 5月 22日, 14:09

Re: 103恆春工商一題

文章 ellipse »

iammark 寫:請教高手。謝謝。
若 a>0 且b>0, 求 a^2/(b-2) + b^2/(a-2)的最小值。
另解: 利用科西不等式+算幾不等式
令A=a-2 ,B=b-2 ,S=a^2/(b-2) + b^2/(a-2)
則S=(A+2)^2 /B +(B+2)^2 /A
由柯西不等式知
[(A+2)^2 /B +(B+2)^2 /A]*(B+A) >=( A+2 +B+2)^2
S>=(A+B+4)^2 /(A+B) = (A+B) + 8 + 16 /(A+B)
>=8 +2*[ (A+B)*16/(A+B) ]^0.5 (算幾不等式)
=8+8=16
最小值=16

回覆文章

回到「高中職教甄討論區」