114 臺南一中
版主: thepiano
114 臺南一中
請參考附件
- 附加檔案
-
- 114 臺南一中答案_更正版.pdf
- (241.04 KiB) 已下載 188 次
-
- 114 臺南一中_填充第9題官方解析.pdf
- (43.77 KiB) 已下載 175 次
-
- 114 臺南一中.pdf
- (452.24 KiB) 已下載 213 次
Re: 114 臺南一中
計算第 3 題
PC/sin(30∘+ θ) = 3/sin60∘
PC = 3sinθ + √3cosθ
RC/sin(120∘- θ) = 4/sin60∘
RC = (4/3)√3sinθ + 4cosθ
PR = [3 + (4/3)√3]sinθ + (4 + √3)cosθ
疊合後,可得 PR 最大值 = √[(100 + 48√3)/3]
△PQR 面積最大值 = 12 + (25/3)√3
PC/sin(30∘+ θ) = 3/sin60∘
PC = 3sinθ + √3cosθ
RC/sin(120∘- θ) = 4/sin60∘
RC = (4/3)√3sinθ + 4cosθ
PR = [3 + (4/3)√3]sinθ + (4 + √3)cosθ
疊合後,可得 PR 最大值 = √[(100 + 48√3)/3]
△PQR 面積最大值 = 12 + (25/3)√3
- 附加檔案
-
- 20250309.jpg (64.58 KiB) 已瀏覽 12289 次
Re: 114 臺南一中
計算第 2 題
(1) (x^2 + x + 1)f(x) = 2x^302 + x^100 + x^61 + a
x = ω = (-1 + √3i)/2 代入,可得
0 = 2ω^2 + ω + ω + a
a = 2
(2) f(x) = (x^2 - x + 1)q(x) + (ax + b)
2x^302 + x^100 + x^61 + 2 = (x^4 + x^2 + 1)q(x) + (ax + b)(x^2 + x + 1)
x = -ω 代入,可得
2ω^2 + 2 = 2aω^2 - 2bw
ω^2 + 1 = aω^2 - bw
-ω = -aω - a - bω
a = 0,b = 1
所求之餘式為 1
(3) f(x) = (x^2 + x + 1)k(x) + (cx + d)
2x^302 + x^100 + x^61 + 2 = [(x^2 + x + 1)^2]k(x) + (cx + d)(x^2 + x + 1)
微分,可得
604x^301 + 100x^99 + 61x^60 = 2(x^2 + x + 1)(2x + 1)k(x) + [(x^2 + x + 1)^2]k'(x) + c(x^2 + x + 1) + (cx + d)(2x + 1)
x = ω 代入,可得
604ω + 100 + 61 = (cω + d)(2ω + 1) = 2cω^2 + (c + 2d)ω + d
604ω + 161 = (-c + 2d)ω + (-2c + d)
c = 94,d = 349
所求之餘式為 94x + 349
(1) (x^2 + x + 1)f(x) = 2x^302 + x^100 + x^61 + a
x = ω = (-1 + √3i)/2 代入,可得
0 = 2ω^2 + ω + ω + a
a = 2
(2) f(x) = (x^2 - x + 1)q(x) + (ax + b)
2x^302 + x^100 + x^61 + 2 = (x^4 + x^2 + 1)q(x) + (ax + b)(x^2 + x + 1)
x = -ω 代入,可得
2ω^2 + 2 = 2aω^2 - 2bw
ω^2 + 1 = aω^2 - bw
-ω = -aω - a - bω
a = 0,b = 1
所求之餘式為 1
(3) f(x) = (x^2 + x + 1)k(x) + (cx + d)
2x^302 + x^100 + x^61 + 2 = [(x^2 + x + 1)^2]k(x) + (cx + d)(x^2 + x + 1)
微分,可得
604x^301 + 100x^99 + 61x^60 = 2(x^2 + x + 1)(2x + 1)k(x) + [(x^2 + x + 1)^2]k'(x) + c(x^2 + x + 1) + (cx + d)(2x + 1)
x = ω 代入,可得
604ω + 100 + 61 = (cω + d)(2ω + 1) = 2cω^2 + (c + 2d)ω + d
604ω + 161 = (-c + 2d)ω + (-2c + d)
c = 94,d = 349
所求之餘式為 94x + 349
Re: 114 臺南一中
第 9 題
官方答案給錯了
正四面體 ABCD
A(a,a,a)、B(b,b,b),C 和 D 在 xy 平面上
體積 72,易知邊 AB = 6√2 = √3(a - b)
a - b = 2√6
設 AB 中點 M((a + b)/2,(a + b)/2,(a + b)/2),CD 中點 N
直線 OM:x = y = z ,直線 ON:x = y,z = 0
tan∠MON = 1/√2
歪斜線長 MN = (√2/2) * 6√2 = OM * tan∠MON = (√6/4)(a + b)
a + b = 4√6
a = 3√6,b = √6
官方答案給錯了
正四面體 ABCD
A(a,a,a)、B(b,b,b),C 和 D 在 xy 平面上
體積 72,易知邊 AB = 6√2 = √3(a - b)
a - b = 2√6
設 AB 中點 M((a + b)/2,(a + b)/2,(a + b)/2),CD 中點 N
直線 OM:x = y = z ,直線 ON:x = y,z = 0
tan∠MON = 1/√2
歪斜線長 MN = (√2/2) * 6√2 = OM * tan∠MON = (√6/4)(a + b)
a + b = 4√6
a = 3√6,b = √6
Re: 114 臺南一中
直線 x = y = z 在 xy 平面的投影是直線 x = y ,z = 0
Re: 114 臺南一中
疑問的點是怎麼確認投影線段會經過CD的中點N
(如何確定A投影到XY平面的點剛好會是CD的中點N?)
(如何確定A投影到XY平面的點剛好會是CD的中點N?)