100 高雄女中 月考試題
發表於 : 2012年 8月 19日, 22:20
有五個由左至右,由小到大的圓 C1, C2, ..., C5 且
圓 C1 與圓 C2 外切, 圓 C2 與圓 C3 外切, 圓 C3 與圓 C4 外切,
圓 C4 與圓 C5 外切,且此五圓有兩條相同的外公切線. 若
圓 C1 的半徑為 4,圓 C5 的半徑為 9,則圓 C3 的半徑為何?
答案: 6
目前看到的作法是「利用這五個圓的半徑 r1, r2, r3, r4, r5 成等比」
則 r1, r3, r5 亦成等比,即 4, r3, 9 成等比推得 r3 = 6.
請問上面用到的等比性質是怎麼來的呢?謝謝.
圓 C1 與圓 C2 外切, 圓 C2 與圓 C3 外切, 圓 C3 與圓 C4 外切,
圓 C4 與圓 C5 外切,且此五圓有兩條相同的外公切線. 若
圓 C1 的半徑為 4,圓 C5 的半徑為 9,則圓 C3 的半徑為何?
答案: 6
目前看到的作法是「利用這五個圓的半徑 r1, r2, r3, r4, r5 成等比」
則 r1, r3, r5 亦成等比,即 4, r3, 9 成等比推得 r3 = 6.
請問上面用到的等比性質是怎麼來的呢?謝謝.