104 新北市聯招
發表於 : 2015年 5月 31日, 15:32
填充第 6 題
設 n 個根為 x_1,x_2,x_3,......,x_n
則
x_1 + x_2 + x_3 + ...... + x_n = a = 2n
(x_1)(x_2)(x_3)......(x_n) = (-1)^n * (-2)^n = 2^n
x_1 + x_2 + x_3 + ...... + x_n ≧ n * [(x_1)(x_2)(x_3)......(x_n)]^(1/n)
2n ≧ 2n
等號成立於 x_1 = x_2 = x_3 = ...... = x_n = 2
p(x) = (x - 2)^n
b = C(n,n-1) * (-2)^(n-1) = n * (-2)^(n-1)
填充第 7 題
cos(x) = 1 - x^2/2! + x^4/4! - ......
cos(3/5) = 1 - 9/50 + 81/(625 * 24) - ... ≒ 0.8254
填充第 8 題
構造 △ABC,三邊長分別是 x,y,z,三邊上的高分別是 1/7,1/8,1/9
令 △ABC面積為 k,則 x = 14k,y = 16k,z = 18k
利用海龍公式算出 △ABC 之面積 = (48√5)k^2
k = (48√5)k^2
k = 1/(48√5)
所求 x + y + z = 48k = 1/√5
設 n 個根為 x_1,x_2,x_3,......,x_n
則
x_1 + x_2 + x_3 + ...... + x_n = a = 2n
(x_1)(x_2)(x_3)......(x_n) = (-1)^n * (-2)^n = 2^n
x_1 + x_2 + x_3 + ...... + x_n ≧ n * [(x_1)(x_2)(x_3)......(x_n)]^(1/n)
2n ≧ 2n
等號成立於 x_1 = x_2 = x_3 = ...... = x_n = 2
p(x) = (x - 2)^n
b = C(n,n-1) * (-2)^(n-1) = n * (-2)^(n-1)
填充第 7 題
cos(x) = 1 - x^2/2! + x^4/4! - ......
cos(3/5) = 1 - 9/50 + 81/(625 * 24) - ... ≒ 0.8254
填充第 8 題
構造 △ABC,三邊長分別是 x,y,z,三邊上的高分別是 1/7,1/8,1/9
令 △ABC面積為 k,則 x = 14k,y = 16k,z = 18k
利用海龍公式算出 △ABC 之面積 = (48√5)k^2
k = (48√5)k^2
k = 1/(48√5)
所求 x + y + z = 48k = 1/√5