106 中壢高中
版主: thepiano
Re: 106 中壢高中
計算第 1 題
以下是以 0.5 為底
log(x^2 - 2x - 15) > log(x + 13)
所求是以下三個不等式的交集
x^2 - 2x - 15 > 0
x^2 - 2x - 15 < x + 13
cos(2x) ≧ 0
以下是以 0.5 為底
log(x^2 - 2x - 15) > log(x + 13)
所求是以下三個不等式的交集
x^2 - 2x - 15 > 0
x^2 - 2x - 15 < x + 13
cos(2x) ≧ 0
Re: 106 中壢高中
第 4 題
44 - 8 = 4 * (11 - 2) = 4 * 9
4444 - 88 = 44 * (101 - 2) = 44 * 99
444444 - 888 = 444 * (1001 - 2) = 444 * 999
計算 6 + 66 + 666 + ... = (6/9) * (9 + 99 + 999 + ...) = (6/9)[10 + 10^2 + 10^3 + ... - n) = ...
第 5 題
OP = (3 * 4)/5 = 12/5
BP = 9/5,PA = 16/5
作 CD 垂直 AB 於 D
PD = AD = 8/5
CD = (1/2)OP = 6/5
BP/BD = PQ/CD
PQ = [(9/5)/(17/5)] * (6/5) = 54/85
44 - 8 = 4 * (11 - 2) = 4 * 9
4444 - 88 = 44 * (101 - 2) = 44 * 99
444444 - 888 = 444 * (1001 - 2) = 444 * 999
計算 6 + 66 + 666 + ... = (6/9) * (9 + 99 + 999 + ...) = (6/9)[10 + 10^2 + 10^3 + ... - n) = ...
第 5 題
OP = (3 * 4)/5 = 12/5
BP = 9/5,PA = 16/5
作 CD 垂直 AB 於 D
PD = AD = 8/5
CD = (1/2)OP = 6/5
BP/BD = PQ/CD
PQ = [(9/5)/(17/5)] * (6/5) = 54/85