第 29 題
∠A = 105 度,∠ABD = 45 度,∠CBD = 60 度,∠C = 75 度,∠CDB = 45 度,∠ADB = 30 度
AB / sin30 = BD / sin105
CD / sin60 = BD / sin75
AB / sin30 = CD / sin60
AB / CD = 1 / √3
△ABD / △BCD = [(1/2) * AB * BD * sin45] / [(1/2) * CD * BD * sin45] = AB / CD = 1 / √3
105 新北市國中
版主: thepiano
-
- 文章: 29
- 註冊時間: 2017年 11月 13日, 10:39
Re: 105 新北市國中
第22題
請教老師
根據解析所述
75也可以找到正整數解,是嗎?
還是題意不是這個意思?再請老師解析,謝謝老師
例如:a=8,b=1,c=1~~~75
例如:a=1,b=2,c=2~~~75
再請老師們幫忙解惑,謝謝老師
請教老師
根據解析所述
75也可以找到正整數解,是嗎?
還是題意不是這個意思?再請老師解析,謝謝老師
例如:a=8,b=1,c=1~~~75
例如:a=1,b=2,c=2~~~75
再請老師們幫忙解惑,謝謝老師
最後由 gucciplevy 於 2018年 4月 19日, 10:05 編輯,總共編輯了 2 次。
Re: 105 新北市國中
第 22 題
題目是 "大於或等於正整數 n 的" 都可以被表示出來
而 77 不能被表示出來,所以不能選 75
第 19 題
三平面交於一線
E_1 和 E_2 的交線是
x = t
y = -2t + 2
z = t - 1
2(-2t + 2) + 4(t - 1) = a
a = 0
第 26 題
a、b、c 三數成等差
則 a + c = 2b
a + c 為偶數,a 和 c 不是兩奇就是兩偶
1 ~ 105 有 53 個奇數和 52 個偶數
所求 = C(53,2) + C(52,2) = 1378 + 1326 = 2704
題目是 "大於或等於正整數 n 的" 都可以被表示出來
而 77 不能被表示出來,所以不能選 75
第 19 題
三平面交於一線
E_1 和 E_2 的交線是
x = t
y = -2t + 2
z = t - 1
2(-2t + 2) + 4(t - 1) = a
a = 0
第 26 題
a、b、c 三數成等差
則 a + c = 2b
a + c 為偶數,a 和 c 不是兩奇就是兩偶
1 ~ 105 有 53 個奇數和 52 個偶數
所求 = C(53,2) + C(52,2) = 1378 + 1326 = 2704