106新北市國中數學科試題與答案

版主: thepiano

math5566
文章: 55
註冊時間: 2011年 4月 3日, 18:57

Re: 106新北市國中數學科試題與答案

文章 math5566 »

我想問一下12和25題.第12題我是用牛頓定理.但算不出答案.謝謝

頭像
thepiano
文章: 5745
註冊時間: 2008年 7月 29日, 10:12

Re: 106新北市國中數學科試題與答案

文章 thepiano »

第 12 題
用勘根定理
易知 (0,1) 間有一根,(-2,-1) 間也有一根
那就是三實根了


第 25 題
∠A、∠B、∠C 所對的弧分別是 90、126、144 度
(90,126,144) = 18
所求 = 90/18 + 126/18 + 144/18 = 20

moemiau
文章: 2
註冊時間: 2013年 12月 11日, 19:41

Re: 106新北市國中數學科試題與答案

文章 moemiau »

thepiano 寫:
2017年 8月 4日, 09:37

第 9 題
代數字比較快
n = 2,m = 5
n = 12,m = 961
第 9 題如果不代數字
請問要怎麼作?

頭像
thepiano
文章: 5745
註冊時間: 2008年 7月 29日, 10:12

Re: 106新北市國中數學科試題與答案

文章 thepiano »

第 9 題
(1) n^2 + n - 1 = 2n + 1
n = 2,m = 5

(2) n^2 + n - 1 > 2n + 1
(n^2 + n - 1,2n + 1) = (n^2 - n - 2,2n + 1)
n^2 - n - 2 = (n - 2)(n + 1)
(n + 1,2n + 1) = 1
(n^2 - n - 2,2n + 1) = (n - 2,2n + 1) = 5
由於 (2n + 1) | (n^2 + n - 1)^2
故 2n + 1 = 5^2,n = 12,m = 961

lovecatbest63
文章: 28
註冊時間: 2016年 2月 27日, 14:53

Re: 106新北市國中數學科試題與答案

文章 lovecatbest63 »

想請教第1、3、19(如果不旋轉三角形APD可以怎麼算?)、38 謝謝
小蜜蜂

頭像
thepiano
文章: 5745
註冊時間: 2008年 7月 29日, 10:12

Re: 106新北市國中數學科試題與答案

文章 thepiano »

第 1 題

直線 AF 和直線 BC 交於 P
直線 BC 和直線 DE 交於 Q
直線 DE 和直線 AF 交於 R
△PQR、△PAB、△QCD、△REF 都是正三角形
ABCDEF = △PQR - (△PAB + △QCD + △REF)


第 3 題
先用餘弦定理求出 BC = 4√3
作 DF 垂直 BC 於 F,則 EF = √3,DF = 2
然後就可以求出 DE 和 AE 了


第 19 題
cos∠PAB = (x^2 - 1) / (2x)
cos∠PAD = (x^2 - 3) / (2x) = sin∠PAB
利用 (cos∠PAB)^2 + (sin∠PAB)^2 = 1
解出 x^2


第 38 題
P(2sinθ + 3,2cosθ + 4)
PA^2 + PB^2 = (2sinθ + 2)^2 + (2cosθ + 4)^2 + (2sinθ + 4)^2 + (2cosθ + 4)^2
= 60 + 8(3sinθ + 4cosθ)
......

gucciplevy
文章: 29
註冊時間: 2017年 11月 13日, 10:39

Re: 106新北市國中數學科試題與答案

文章 gucciplevy »

請教一下第27題
第 27 題
任意 5 數的和,都是 15 的倍數,有兩種選法
(1) 都選 15 的倍數,有 13 個
(2) 都選除以 15 餘 3 的數,有 14 個
所求 = 3 + 18 + 33 + ... + 198 = 1407

其中第一種選法的和是不是為1365?

頭像
thepiano
文章: 5745
註冊時間: 2008年 7月 29日, 10:12

Re: 106新北市國中數學科試題與答案

文章 thepiano »

gucciplevy 寫:
2018年 5月 12日, 21:40
請教一下第27題
其中第一種選法的和是不是為1365?
是的

gucciplevy
文章: 29
註冊時間: 2017年 11月 13日, 10:39

Re: 106新北市國中數學科試題與答案

文章 gucciplevy »

請教老師
第27題是不是變成兩個答案(1365和1407)皆可?

頭像
thepiano
文章: 5745
註冊時間: 2008年 7月 29日, 10:12

Re: 106新北市國中數學科試題與答案

文章 thepiano »

gucciplevy 寫:
2018年 5月 12日, 22:54
第27題是不是變成兩個答案(1365和1407)皆可?
不是,題目要選出來的數有"最多"個

回覆文章

回到「國中教甄討論區」