114 竹科實中
版主: thepiano
Re: 114 竹科實中
第 5 題
sinα * cosβ + |cosα * sinβ| = sinα * |cosα| + |sinβ| * cosβ
(sinα - |sinβ|)(cosβ - |cosα|) = 0
令 sinα = a,cosβ = b
[(a - √(1 - b^2)][b - √(1 - a^2)] = 0
a^2 + b^2 = 1
又 tanγ * cotγ = 1
(tanγ - sinα)^2 + (cotγ - cosβ)^2 即 xy = 1 上一點到 x^2 + y^2 = 1 上一點距離的平方
最小值 = (√2 - 1)^2 = 3 - 2√2
sinα * cosβ + |cosα * sinβ| = sinα * |cosα| + |sinβ| * cosβ
(sinα - |sinβ|)(cosβ - |cosα|) = 0
令 sinα = a,cosβ = b
[(a - √(1 - b^2)][b - √(1 - a^2)] = 0
a^2 + b^2 = 1
又 tanγ * cotγ = 1
(tanγ - sinα)^2 + (cotγ - cosβ)^2 即 xy = 1 上一點到 x^2 + y^2 = 1 上一點距離的平方
最小值 = (√2 - 1)^2 = 3 - 2√2
Re: 114 竹科實中
填充第 2 題
X 表示第 1 張和第 20 張
O 表示沒坐人
@ 表示有坐人
X@O@O@O@O@X
還剩 9 張空椅,插入 5 個 @ 產生的 6 個空隙中
每個空隙不能插入 4 個以上,否則會有連續 5 個空位
所求 = [H(6,9) - C(6,1) * H(6,5) + C(6,2) * H(6,1)] * 5! = 69600
X 表示第 1 張和第 20 張
O 表示沒坐人
@ 表示有坐人
X@O@O@O@O@X
還剩 9 張空椅,插入 5 個 @ 產生的 6 個空隙中
每個空隙不能插入 4 個以上,否則會有連續 5 個空位
所求 = [H(6,9) - C(6,1) * H(6,5) + C(6,2) * H(6,1)] * 5! = 69600
Re: 114 竹科實中
填充第 3 題
a_1 = 10,a_2 是整數,表示公差是整數
S_n <= S_4,表示 a_5 <= 0 且公差是負整數
易知公差 = -3
剩下的就裂項相消
a_1 = 10,a_2 是整數,表示公差是整數
S_n <= S_4,表示 a_5 <= 0 且公差是負整數
易知公差 = -3
剩下的就裂項相消
Re: 114 竹科實中
計算第 2 題
(1) 2a_2 = a_1 + a_3
√S_n = λ(a_n - 1) + 1
√S_2 - √S_1 = λ(a_2 - a_1) = λ(a_3 - a_2) = √S_3 - √S_2
2√S_2 = √S_1 + √S_3
(2) a_2 = a_1 + d,a_3 = a_1 + 2d
4S_2 = S_1 + S_3 + 2√(S_1S_3)
4(2a_1 + d) = a_1 + 3a_1 + 3d + 2√[a_1(3a_1 + 3d)]
d = 2a_1,a_2 = 3a_1,a_3 = 5a_1
(3) λ = (√S_2 - 1) / (a_2 - 1) = (√S_3 - 1) / (a_3 - 1)
(√4a_1 - 1) / (3a_1 - 1) = (√9a_1 - 1) / (5a_1 - 1)
a_1 = 1,λ = 1/2
√S_n = (1/2)(a_n - 1) + 1
(4) S_n - S_(n - 1) = a_n = 2√(S_n) - 1
(√(S_n) - 1)^2 = S_(n - 1)
√S_n = √[S_(n - 1)] + 1
√S_n = n
S_n = n^2
a_n = S_n - S_(n - 1) = n^2 - (n - 1)^2 = 2n - 1
(1) 2a_2 = a_1 + a_3
√S_n = λ(a_n - 1) + 1
√S_2 - √S_1 = λ(a_2 - a_1) = λ(a_3 - a_2) = √S_3 - √S_2
2√S_2 = √S_1 + √S_3
(2) a_2 = a_1 + d,a_3 = a_1 + 2d
4S_2 = S_1 + S_3 + 2√(S_1S_3)
4(2a_1 + d) = a_1 + 3a_1 + 3d + 2√[a_1(3a_1 + 3d)]
d = 2a_1,a_2 = 3a_1,a_3 = 5a_1
(3) λ = (√S_2 - 1) / (a_2 - 1) = (√S_3 - 1) / (a_3 - 1)
(√4a_1 - 1) / (3a_1 - 1) = (√9a_1 - 1) / (5a_1 - 1)
a_1 = 1,λ = 1/2
√S_n = (1/2)(a_n - 1) + 1
(4) S_n - S_(n - 1) = a_n = 2√(S_n) - 1
(√(S_n) - 1)^2 = S_(n - 1)
√S_n = √[S_(n - 1)] + 1
√S_n = n
S_n = n^2
a_n = S_n - S_(n - 1) = n^2 - (n - 1)^2 = 2n - 1