解聯立方程組
x(x + y + z) = 30 - yz
y(x + y + z) = 35 - xz
z(x + y + z) = 42 - xy
答案: (x,y,z) = (2,3,4) 或 (-2, -3, -4)
目前的想法是將三式相加得到
(x + y + z)^2 = 107 - (xy + yz + xz)
但是接下來如果右邊提出 xyz 也做不出來,
如果用討論的,也就是利用右邊不是負的,
情況又太多,請大家幫幫忙,謝謝~
解聯立方程組
版主: thepiano
Re: 解聯立方程組
x^2 + xy + xz = 30 - yz
x^2 + xy + xz + yz = 30
(x + y)(x + z) = 30
(x + y)(x + z) = 30 = 5 * 6
(x + y)(y + z) = 35 = 5 * 7
(y + z)(x + z) = 42 = 6 * 7
x + y,x + z,y + z 三者同正或同負
(x + y)(x + z)(y + z) = 5 * 6 * 7 or (-5) * (-6) * (-7)
......
x^2 + xy + xz + yz = 30
(x + y)(x + z) = 30
(x + y)(x + z) = 30 = 5 * 6
(x + y)(y + z) = 35 = 5 * 7
(y + z)(x + z) = 42 = 6 * 7
x + y,x + z,y + z 三者同正或同負
(x + y)(x + z)(y + z) = 5 * 6 * 7 or (-5) * (-6) * (-7)
......
Re: 解聯立方程組
(x + y)(x + z) = 30 = 5 * 6 ...... (1)
(x + y)(y + z) = 35 = 5 * 7 ...... (2)
(y + z)(x + z) = 42 = 6 * 7 ...... (3)
三式相乘 [(x + y)(y + z)(x + z)]^2 = (5 * 6 * 7)^2
(x + y)(y + z)(x + z) = 5 * 6 * 7 ...... (4)
負的就不寫了
(4)/(1),(4)/(2),(4)/(3)
y + z = 7
x + z = 6
x + y = 5
......
(x + y)(y + z) = 35 = 5 * 7 ...... (2)
(y + z)(x + z) = 42 = 6 * 7 ...... (3)
三式相乘 [(x + y)(y + z)(x + z)]^2 = (5 * 6 * 7)^2
(x + y)(y + z)(x + z) = 5 * 6 * 7 ...... (4)
負的就不寫了
(4)/(1),(4)/(2),(4)/(3)
y + z = 7
x + z = 6
x + y = 5
......