100 成淵高中

版主: thepiano

yango53
文章: 1
註冊時間: 2011年 6月 11日, 08:41

Re: 100 成淵高中

文章 yango53 »

請問第7題大家畫出來都是9個交點嗎

怎麼我畫出來只有8個交點呢?? :embs:

Joe
文章: 16
註冊時間: 2011年 5月 23日, 06:36

Re: 100 成淵高中

文章 Joe »

(4,1)那個點 不是切點....

Joe
文章: 16
註冊時間: 2011年 5月 23日, 06:36

Re: 100 成淵高中

文章 Joe »

請問皮大

關於第四題

令 F 關於 y = -3/2 之對稱點為 F'(h,(h - 5)/2)<~~這是如何得到的

利用中點找到的對稱點是(h,2h-4) 代入準線亦可得h=1

謝謝指導

頭像
thepiano
文章: 5745
註冊時間: 2008年 7月 29日, 10:12

Re: 100 成淵高中

文章 thepiano »

Joe 寫:關於第四題
令 F 關於 y = -3/2 之對稱點為 F'(h,(h - 5)/2)<~~這是如何得到的
對稱點 F' 在準線 x = 2y + 5 上
其橫坐標為 h
h = 2y + 5
y = (h - 5) / 2

ellipse
文章: 374
註冊時間: 2010年 5月 22日, 14:09

Re: 100 成淵高中

文章 ellipse »

Joe 寫:(4,1)那個點 不是切點....
這題出得很不錯
一不小心就會"畫"錯!

dennisal2000
文章: 7
註冊時間: 2011年 4月 29日, 17:23

Re: 100 成淵高中

文章 dennisal2000 »

抱歉~ 想問計算第一題與填充第八題

神人老王的兩行結束~

我實在無法參透...

有善心人士願意詳細解說一下嗎>"<

math614
文章: 7
註冊時間: 2011年 6月 4日, 00:15

Re: 100 成淵高中

文章 math614 »

用正弦: DE/sinABE = 2R = BC (BC就是外接圓直徑) :grin:

math614
文章: 7
註冊時間: 2011年 6月 4日, 00:15

Re: 100 成淵高中

文章 math614 »

8. Z = cosθ + i sinθ => 共軛複數 = cosθ - i sinθ = cos(-θ) + i sin(-θ)
Z^5 = cos 5θ + i sin 5θ = cos(-θ) + i sin(-θ)
會滿足此條件的是邊長為1的正六邊形頂點
面積=√3/4 * 6 = 3√3/2
第一次回答~ 有錯請指正! :x

addcinabo
文章: 11
註冊時間: 2010年 6月 21日, 21:15

Re: 100 成淵高中

文章 addcinabo »

想請問各位大大第14題: 已知平面E上有不共線三點A,B,Q。平面E外有一點P,若直線PQ垂直E,
且角PAQ,角QAB,角PAB皆為銳角,求證:
cos角PAQ*cos角QAB = cos角PAB
感謝了^^

頭像
thepiano
文章: 5745
註冊時間: 2008年 7月 29日, 10:12

Re: 100 成淵高中

文章 thepiano »

第 14 題
作 QC 垂直 AB 於 C

由三垂線定理,PC 垂直 AB

cos∠PAQ = AQ / PA
cos∠QAB = AC / AQ
cos∠PAB = AC / PA

cos∠PAQ * cos∠QAB = cos∠PAB

回覆文章

回到「高中職教甄討論區」