102新化高中
版主: thepiano
Re: 102新化高中
第二部份 填充第 3 題
令 f(x) = x^1959 - 1 = (x^2 + 1)(x^2 + x + 1)q(x) + ax^3 + bx^2 + cx + d
f(ω) = a + bω^2 + cω + d = 0
f(ω^2) = a + bω + cω^2 + d = 0
可得 b = c = a + d
f(i) = -ai - b + ci + d = -i - 1
c - a = -1
d - b = -1
d = a - 2
a = 1,b = c = 0,d = -1
令 f(x) = x^1959 - 1 = (x^2 + 1)(x^2 + x + 1)q(x) + ax^3 + bx^2 + cx + d
f(ω) = a + bω^2 + cω + d = 0
f(ω^2) = a + bω + cω^2 + d = 0
可得 b = c = a + d
f(i) = -ai - b + ci + d = -i - 1
c - a = -1
d - b = -1
d = a - 2
a = 1,b = c = 0,d = -1
Re: 102新化高中
其實只要一條即可
由 f(ω) = a + bω^2 + cω + d = 0
[a + (-1/2)b + (-1/2)c + d] + [(c - b)(√3/2)i] = 0
a + (-1/2)b + (-1/2)c + d = 0 且 c - b = 0
...
由 f(ω) = a + bω^2 + cω + d = 0
[a + (-1/2)b + (-1/2)c + d] + [(c - b)(√3/2)i] = 0
a + (-1/2)b + (-1/2)c + d = 0 且 c - b = 0
...
Re: 102新化高中
這二題都是基本題,建議您先把高中課程(這是基本功)弄熟,再寫考古題
另外,在這個主題問題目,只要說什麼大題的第幾題即可,不用擷取圖檔
第一部份,填充第 7 題
未患病而被誤判成有患病的有 1970 - 1900 = 70 人
有患病而被誤判成未患病的有 1905 - 1900 = 5 人
所求 = (70 + 5)/2010
填充第 8 題
cosB = (a^2 + c^2 - b^2)/(2ac) = c/(2a)
a = b
c = (2/3)a
cosA = cosB = [(2/3)a]/(2a) = 1/3
sinA = sinB = (2/3)√2
sinC = sin(A + B) = (4/9)√2
另外,在這個主題問題目,只要說什麼大題的第幾題即可,不用擷取圖檔
第一部份,填充第 7 題
未患病而被誤判成有患病的有 1970 - 1900 = 70 人
有患病而被誤判成未患病的有 1905 - 1900 = 5 人
所求 = (70 + 5)/2010
填充第 8 題
cosB = (a^2 + c^2 - b^2)/(2ac) = c/(2a)
a = b
c = (2/3)a
cosA = cosB = [(2/3)a]/(2a) = 1/3
sinA = sinB = (2/3)√2
sinC = sin(A + B) = (4/9)√2
Re: 102新化高中
請問老師們 第二部分的第4題 我用判別式小於0
得到 (log2K )^2 < (1/4)
得 (根號)2/2 < k < (根號)2
請問我那裏錯了 ?
煩請指導
謝謝
得到 (log2K )^2 < (1/4)
得 (根號)2/2 < k < (根號)2
請問我那裏錯了 ?
煩請指導
謝謝
Re: 102新化高中
令 y = x^2 > 0
原方程改寫成 y^2 + 2√3(logk)y + [1 - (logk)^2] = 0 (底數 2 略去)
上述方程有 2 個相異正實根
12(logk)^2 - 4[1 - (logk)^2] > 0
-2√3(logk) > 0
1 - (logk)^2 > 0
......
原方程改寫成 y^2 + 2√3(logk)y + [1 - (logk)^2] = 0 (底數 2 略去)
上述方程有 2 個相異正實根
12(logk)^2 - 4[1 - (logk)^2] > 0
-2√3(logk) > 0
1 - (logk)^2 > 0
......